

Session 5B: Sustainable Planning of Industrial Parks

Hannes Utikal

Provadis University of Applied Sciences Frankfurt

Marian Chertow

Yale University Center of Industrial Ecology

mplemented by:

10th International Sustainable Industrial Areas (SIA) Conference

Mohamed Mazen

GIZ Egypt, Session Moderator

Ahmed Huzayyin

Chemonics Egypt Consultants

Peter Lindlau Tomorrow Labs GmbH

TOMORROV/

your industrial IoT-platform

Industry 4.0 / Industrial IoT

We help you to...

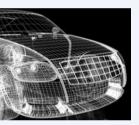
digitize your shop-floor...

digitize & manage your buildings...

Digitalization – How do *YOU* benefit?

Just to be clear on...

Digitalization



- From "no information" to information driven
- From analog to digital
- From "guessing" to "fact based"
- From manual to automated
- Mandatory for:
 - Digital Twin
 - Twin Transformation
 - Many, many others...

Digital Twin

- Simulation
 - •Reduce costs (no prototypes, higher
 - test speed, many test scenarios)
 - Integrated Testing / "Unit-Testing"
- •Audit (Tracing/Tracking)

higher os) ting"

Twin Transformation

 Resources usage - Environmental footprint

 \rightarrow reduced resources == reduced costs

- Race for human talents

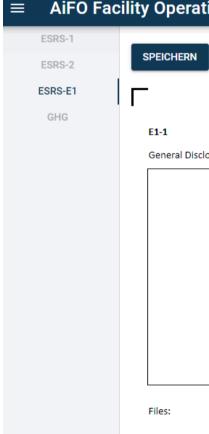
 → talents are seeking for innovative,
 digital, and more and more importantly:
 sustainable companies.
- Environmental footprint already is, in will be much more in future: Enforced by law

Digitalization – Industry 4.0 What is your benefit?

Implement new Business Models

- Subscription vs purchase
 - Compressed air instead of compressor
 - Produced meters/kg of cotton sliver instead of machine purchase
 - •Remote maintenance / auto-fill inventories

Enabler for Digitally connected production resources **Sustainability boost effectiveness** Reduce / Track resource consumption • Boost production effectiveness (OEE) • Enforced by law • Reduce your bills for resource consumption • Raise credibility • Enabler for artificial intelligence • Raise company ranking Predictive maintenance • Be attractive for human talents •Self adjusting processes Your customers DO CARE! •Smart Factory (no "green washing")


- Smart resource purchase /consumption (e.g. avoid energy peaks)
- •Create work aids (Robots...)
- Take advantage of a digital twin

Sustainability – no longer just "nice to take care"

- •Laws will enforce it Form the year 2025 on, companies > 250 employees MUST report
- •Your customers will demand it
- "Race for Talents" will demand it

Greenhouse gases:

- CO2: Carbon dioxide
- CH4: methane
- N2O: dinitrogen monoxide
- HFCs: hydrofluorocarbons
- PFCs: perfluorinated hydrocarbons
- SF6: sulfur hexafluoride
- NF3: nitrogen trifluoride

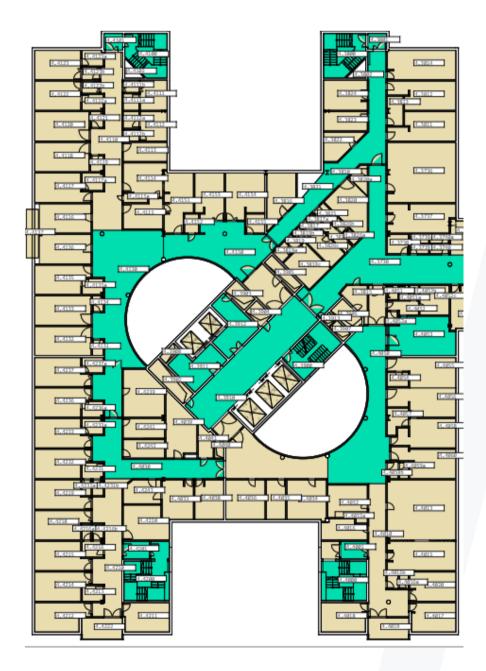
• Digitalization is on its way...

•Reporting metadata/structures are defined

• Digital data exchange format(s), e.g.

XBRL = eXtensible Business Reporting Language

 $\bullet \rightarrow$ automate report generation


tions Charité CFM Facility Manager	nent GmbH	GLOBUS	🔶 MELDUNGEN	(1-1) SENSORIK
Transition plan for climate change mitigati	ion			
closure Requirement	Description:			
	disclosing its transition p of how it will adjust its s transition to a sustainab with the Paris Agreemer the objective of achievir established in Regulation	to the undertaking's efforts in climate ch plan, the undertaking is expected to provi strategy and business model to ensure cor ole economy and with the limiting of globa nt (or an updated international agreemen ng climate neutrality by 2050 with no or li in (EU) 2021/1119 (European Climate Law I and gas-related activities.	de a high-level explanation mpatibility with the al warming to 1.5°C in line t on climate change) and mited overshoot as	2

Remarks/Help

t is recommended to reference GHG emission reduction targets to the planned actions of the transition plan . In case the undertaking does not have a transition plan in place, it shall indicate whether and, if so, when it will adopt a transition plan.

Sustainability – automate knowledge generation

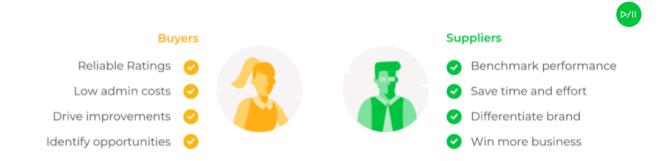
Sustainability – no longer just "nice to take care"

ecovadis Enter

Enterprise Solutions

Sustainability Assessments Resources

About Blog EN


Sustainability Ratings For Global Supply Chains

Our flagship solution, EcoVadis Ratings, is the cornerstone of over 1000+ sustainable procurement programs within global value chains and has been tested on over 100,000+ companies across 200+ industries and 175+ countries.

EcoVadis: Global, Reliable Assessments

Solving a complex challenge, making it easier for buyers and better for suppliers.

•ESRS (<u>Environmental Social Reporting Guideline</u>) About the draft ESRS

In April 2021, the European Commission adopted a legislative proposal for a Corporate Sustainability Reporting Directive (CSRD) that requires companies within its scope to report using a double materiality perspective in compliance with European Sustainability Reporting Standards (ESRS) adopted by the European Commission as delegated acts. Under the

• GRI (<u>G</u>lobal <u>Sustainability</u> <u>Standards</u> <u>B</u>oard)

 Vertex
 Standards < Mow to use the GRI Standards < Reporting support </td>

 More 's 's andards 's 'alobal Sustainability Standards Board

 GBOBABAS SUSSEX Standards Board

 The GSSB has sole responsibility for setting the world's first globally accepted standards for sustainability reporting – the GRI Standards. Established as an independent operating entity under the auspices of GRI, GSSB members represent a range of expertise and multi-stakeholder perspectives on sustainability reporting.

•... and much more

Digitalization – Industry 4.0 What is your benefit?

Implement new Business Models

- Subscription vs purchase
 - Compressed air instead of compressor
 - Produced meters/kg of cotton sliver instead of machine purchase
 - •Remote maintenance / auto-fill inventories

Enabler for Digitally connected production resources **Sustainability boost effectiveness** Reduce / Track resource consumption • Boost production effectiveness (OEE) • Enforced by law • Reduce your bills for resource consumption • Raise credibility • Enabler for artificial intelligence • Raise company ranking Predictive maintenance • Be attractive for human talents •Self adjusting processes Your customers DO CARE! •Smart Factory (no "green washing")

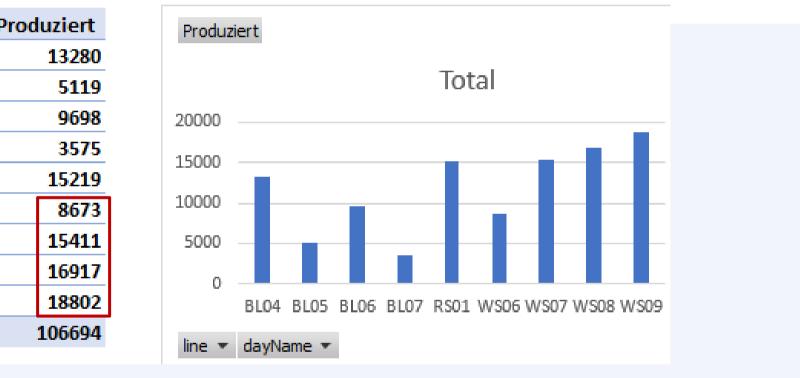
- Smart resource purchase /consumption (e.g. avoid energy peaks)
- •Create work aids (Robots...)
- Take advantage of a digital twin

Examples and use cases

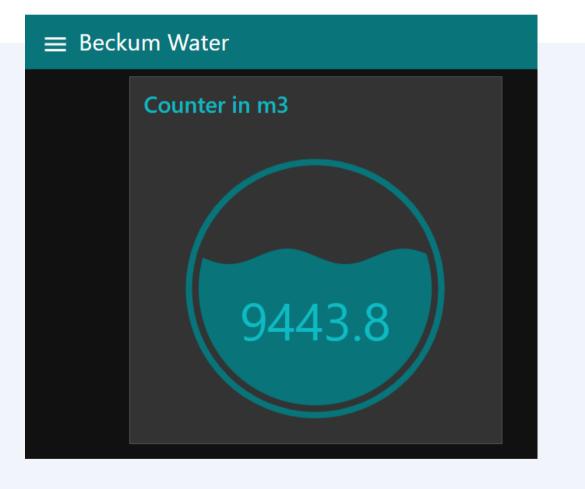
- AGC Glass Europe
- Quick Wins, -"low hanging fruits"
- Supplier Independence -

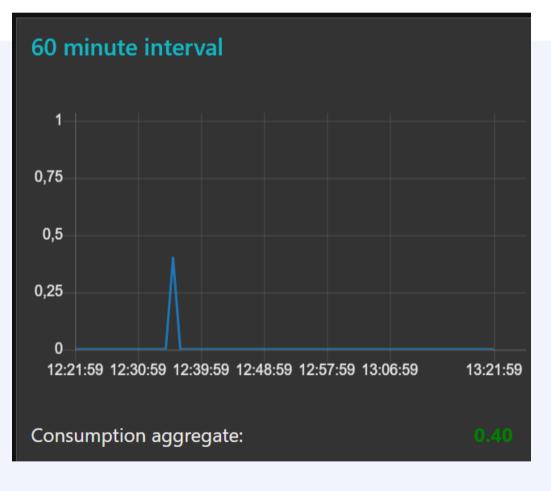
https://www.youtube.com/watch?v=KcrWPGwuw00

Industry 4.0 – AGC Europe



Video – Tomorrow Connect at AGC Glass Europe


Industry 4.0 – AGC Europe


Findings, business impact	Produkt 💌 Prod
rmanigs, sasmess impact	🗄 BL04
	🖽 BL05
	🖽 BL06
	🖽 BL07
	🖽 RS01
	⊞ WS06
Example: Wind Shields and Backlights	⊞ WS07
	⊞ WS08
 Analyse production efficiency 	⊞ WS09
 Result: output is at ~ 70% (!) 	Grand Total
Concerner Drocess change reduced	
 Consequence: Process change, reduced 	

part cycle time form > 60 seconds to less than 50 seconds

"low hanging fruits" – energy monitor

Consumption	
Water	9450.60
Energy	173610.30
Heating	3623.10

"low hanging fruits" – Fill level watcher

Fill level control for Welding rod - Apply weight sensor

The story behind this use-case:

 Company internal employee enablement, topic: "What is digitalization all about" (Full day workshop)

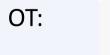
supplier independence

One of the triggers: Supply chain crisis

Proprietary controller (PLC)

Industrial PC (and Peripherals)

Separation of Concerns



Proprietary

- OT > Machine Control Software
- IT > User Interface, Business Logic, Analytics

Standard Development Frameworks, Open Source Software and community

IT:

And much more...

Digitalization -Challenges

01

How do I get information that is relevant to my manufacturing process?

02.

How can I derive potentials and evaluate it economically?

03.

How do I transform my findings into process improvement?

04.

How do I "win" my employees for the changes and new opportunities?

01 Step 1: **Collect data generated on your shopfloor/building/...**

• Physically connect machines, systems and sensors

• Where ever possible, use standards such as: OPC-UA, MTConnect

Result: Facts are created

02. Step 2: Map raw data to manufacturing process related information

•Create rules to convert raw data, convert raw data to meaningful information • Derive and constantly expand the process- and company-specific metadata model

(which data is relevant for my company?)

Result: Information for the specific manufacturing process is available

03. Step 3: Analyze information and put it in the business context

• What are the business effects of the findings

Result: Clear picture where the biggest potentials are

Step 4: 04. **Boost your shopfloor effectiveness by 10% to 30%**

- Define and implement measures for process improvement and lift identified potentials
- Which process changes/measures will have the greatest benefit

Result: Change potentials are recognized and transferred to a permanent, fact-based change management

01-04.

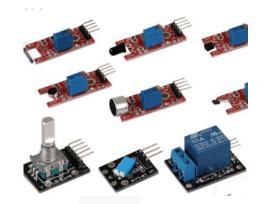
Take along your employees, preferably from the beginning and across processes

• Identify positive minded employees and promote them as "beacons".

Result: Motivated, positive-minded team is "on board", willing to contribute

What do you need – how do you get there?

PLC (Programmable Logic Controller)



Industrial PC \rightarrow Gain Supplier Independence

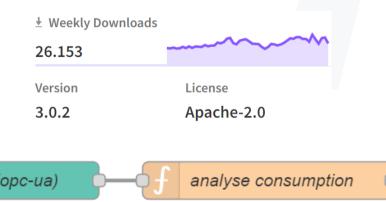
Sensors, Actors \rightarrow Retrofit

What do you need – how do you get there?

Flexible IT-Tools

- Connect your resources, sensors and actors
- Transform, Aggregate, Store, Analyze, ...
- Present (ui), Automate and Decide
- Take advantage of the "magic" of AI

Example for low coding (open source):



• Machine, Sensor, Actor communication (Look for standard protocols such as opc-ua)

• Security – your data is YOUR data

• Efficient Software tools to implement your business logic, e.g. low coding platforms

Ч С

•))

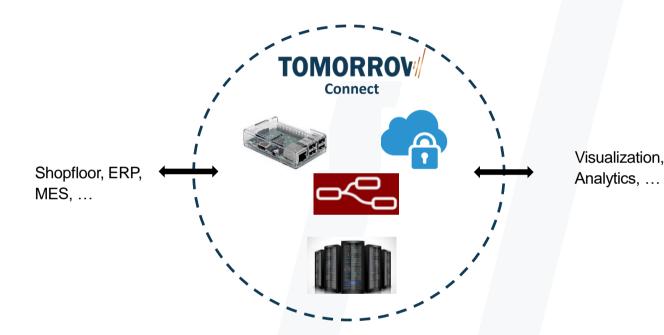
Cooperations – Synergies – Industrial parks

"Coopetition"

Competition and Cooperation

 Joint R&D projects 	•"Com
 Joint Development / Co-development 	• Share
 Subject matter communities 	• Ne
 Joint Services platforms / data 	• Share
"conformities"	• Share
 Commonly used data lakes 	•e.{
 AI - special interest groups 	•Smart
 AI - common data sets for AI based machine learning, common subject matter algorithms 	•Sn
•Co-Working Spaces / "Testbeds"	•Co-De
 Subject matter offerings / initiatives 	

Resources Sharing


- mon digital spaces"
- d infrastructure
- etwork, Security, IT-Services
- d procurement
- d assets
- g. 3D Printers
- metering, "smoothen" energy peaks
- mart purchase via Smart Meters
- evelop Sensors, Actors, Controls, "smart-devices"

Example "R&D consortium"

"eApps4Production" – Industry 4.0

- •Funded by: Federal Ministry of Education and Research (Germany)
- Duration: 3 years
- •Goal: Create an industrial services platform hosting manufacturing applications
- Result (among others): "Tomorrow Connect"

Cooperations – Synergies – Industrial parks

"Coopetition"

Competition and Cooperation

 Joint R&D projects 	•"Com
 Joint Development / Co-development 	• Share
 Subject matter communities 	• Ne
 Joint Services platforms / data 	• Share
"conformities"	• Share
 Commonly used data lakes 	•e.{
 AI - special interest groups 	•Smart
 AI - common data sets for AI based machine learning, common subject matter algorithms 	•Sn
•Co-Working Spaces / "Testbeds"	•Co-De
 Subject matter offerings / initiatives 	

Resources Sharing

- mon digital spaces"
- d infrastructure
- etwork, Security, IT-Services
- d procurement
- d assets
- g. 3D Printers
- metering, "smoothen" energy peaks
- mart purchase via Smart Meters
- evelop Sensors, Actors, Controls, "smart-devices"

Example "Coopetition": Production of foils

Raw granules

"subject matter value chain"

Use case:

Multiple suppliers within the plastic foils production value chain are trying to establish a common services platform:

- •Uniform metadata (orientation towards ANSI/ISA-95)
- •Reference implementation (open source, small footprint)

Final product

Example "Coopetition": Production of foils

Goals/Motivation

- •Securing or expanding market positions
- •New business models (value-added services, data sharing)

Initial use-cases

- •DRP -> "Digital Role Profile", electronic product data sheet
- Backtracking
- Production optimization: Optimized machine settings (recipe) through knowledge of material properties from previous production steps (→ previous supplier)

Discussions

- •Who will provide data, what data is required?
- How do data formats look like (metadata)?
- How to handle security
- •Should it be for free, or license based
- How does the "value add" mature into \$\$\$ for each party?
- •Who may access the data

Critical Success Factors

- Have the **right people** on board!
- •Look at the opportunities rather than on the threats
- Don't over-manage and overload with never
- ending requirement write-ups, structure
- definitions, architecture decisions and endless meetings
- \rightarrow just get started!

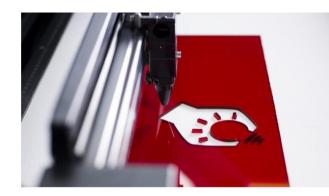
Cooperations – Synergies – Industrial parks

"Coopetition"

Competition and Cooperation

 Joint R&D projects 	•"Comn
 Joint Development / Co-development 	 Shared
 Subject matter communities 	•Ne ⁻
 Joint Services platforms / data 	• Shared
"conformities"	 Shared
 Commonly used data lakes 	•e.g
 AI - special interest groups 	•Smart
 AI - common data sets for AI based machine learning, common subject matter algorithms 	•Sm
•Co-Working Spaces / "Testbeds"	•Co-Dev
•Subject matter offerings / initiatives	

Resources Sharing

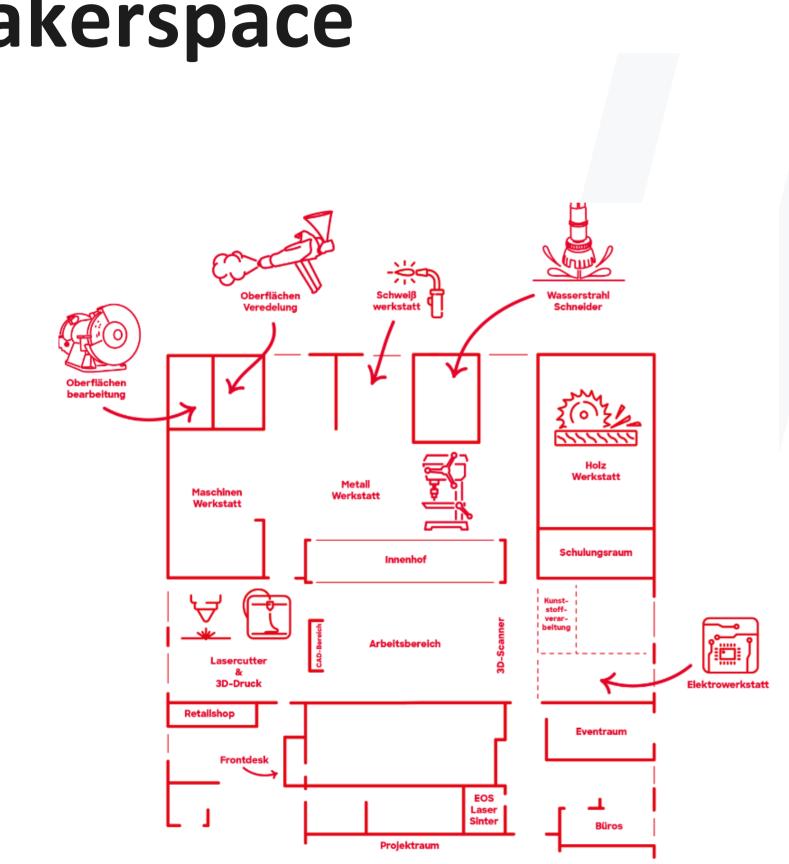

- non digital spaces"
- d infrastructure
- twork, Security, IT-Services
- procurement
- assets
- . 3D Printers
- metering, "smoothen" energy peaks
- art purchase via Smart Meters
- velop Sensors, Actors, Controls, "smart-devices"

Example Testbed: TUM – Makerspace

(TUM = Technical University of Munich)

<image>

ÜBERSICHT GARCHING


LASERCUTTER

3D-DRUCK

KUNSTSTOFF VERARBEITUNG (Synthetic materials)

Industry 4.0 – Digitalization There is no reason to wait

Thank you

Peter Lindlau

Tomorrowlabs GmbH Hindenburgstraße 49 22297 Hamburg www.tomorrowlabs.io

phone +49 175 - 571 8699: p.lindlau@tomorrowlabs.ioemail:

TONORROV/ LABS

Backup

TONORROV/ LABS

Your "cookbook" for getting started

"Think big – start small"

How to get started – what is the effort?

01. Define Team and Asset

First, identify a machine or production resource that can ideally be connected via a standard protocol (OPC-UA / MTConnect). Of course, you also need motivated employees who have specialist knowledge to be able to interpret the data coming from the machine.

02. Connect Asset

In this step, internal IT staff needs to be involved. The machine data is processed, interpreted and stored on a computer. Initial evaluations can be made.

For such data analysis, "business administration" or "controlling" can already be integrated.

03. How big is the effort?

If the prerequisites are in place, the first machine can be connected within one day.

If you add a few more days to interpret the data, you can take the first step towards digitizing the factory floor within a week.

"Think big – start small"

Von den ersten Erkenntnissen zur Digitalisierung des Unternehmens

04. The first findings

We experience that the first findings are already so surprising that you can think about the "Big Picture".

Gradually you develop your own data model: Which information is important for my decisions? (e.g., cycle time, down time, good/bad parts, energy consumption, capital lock, ...)

05. "Think big"

What are the next steps, what information is still missing?

How do I motivate the team, who must be there from the very beginning?

How do I create the "momentum" from operator to management?

How do I integrate all production resources, even older machines?

06. Iterative Steps

Gradually connect the factory, depending on the importance and knowledge gained. Incorporate operational systems (ERP, MES, legacy applications).

Integrate more corporate functions, from sales to the customer.